

MATHEMATICS

61. If
$$e^x + e^{f(x)} = e$$
, then for $f(x)$

(a)
$$D_f = (-\infty, 0], R_f = (-\infty, 0]$$

(b)
$$D_f = (-\infty, 1), R_f = (-\infty, 1)$$

(c)
$$D_f = (-\infty, 0), R_f = (-\infty, 1)$$

(d)
$$D_f = (-\infty, 1], R_f = (-\infty, 1]$$

If $f(x) = ax^2 + bx + c$ and roots of f(x) = 0, represents the slope of two different line. If one 62. of the line is x + 1 = 0, then equation of other line passing through origin is.

(a)
$$y = (a - b + c)x$$
 (b) $bx + cy = 0$

$$(c) cx + by = 0$$

- (d) None of these
- If three vectors \vec{a} , \vec{b} , \vec{c} are such that $\vec{a} \neq \vec{0}$ and $\vec{a} \times \vec{b} = 2\vec{a} \times \vec{c}$, $|\vec{a}| = |\vec{c}| = 1$, $|\vec{b}| = 4$ and the angle 63. between \vec{b} and \vec{c} is $\cos^{-1}\frac{1}{4}$ then $\vec{b}-2\vec{c}=\lambda\vec{a}$ where λ is equal to

(a)
$$\pm 2$$

(b)
$$\pm 4$$

(c)
$$\frac{1}{2}$$

- If $I = \int_{0}^{\pi/2} \ell n(\sin x) dx$ then $\int_{-\pi/4}^{\pi/4} \ell n(\sin x + \cos x) dx =$

(a)
$$\frac{I}{2}$$

(b)
$$\frac{I}{4}$$

(c)
$$\frac{I}{\sqrt{2}}$$

- (d) I
- Let z_1 , z_2 , z_3 be three distinct complex numbers satisfying $|z_1 1| = |z_2 1| = |z_3 1|$. If $z_1 = |z_3 1|$ is $|z_1 1| = |z_3 1|$. 65. $+z_2 + z_3 = 3$ then z_1, z_2, z_3 must represent the vertices of:
 - (a) an equilateral triangle
- (b) an isosceles triangle which is not equilateral

(c) a right triangle

- (d) nothing definite can be said
- If $f(x) = \begin{cases} \sin x, & x \neq n\pi, \\ 2 \text{ otherwise} \end{cases}$ n is an integer $g(x) = \begin{cases} x^2 + 1 & x \neq 0, 2 \\ 4, & x = 0 \\ 5, & x = 2 \end{cases}$, then $\lim_{x \to 0} g(f(x))$ is
 - (a) 1
- (b) 5
- (c) 6
- 67. In a class tournament where the participants were to play one game with another, two class players fell ill, having played 3 games each. If the total number of games played is 84, the number of participants at the beginning was:
 - (a) 15
- (b) 16
- (c) 20
- (d) 21
- The ratio in which the plane $\vec{r} \cdot (\vec{i} 2\vec{j} + 3\vec{k}) = 17$ divides the line joining the points 68. $-2\vec{i} + 4\vec{j} + 7\vec{k}$ and $3\vec{i} - 5\vec{j} + 8\vec{k}$ is
 - (a) 1:5
- (b) 1:10
- (c) 3:5 (d) 3:10
- 69. The equation to the circle which has a tangent 2x - y - 1 = 0 at (3, 5) on it and with the centre on x + y = 5, is

(a)
$$x^2 + y^2 + 6x - 16y + 28 = 0$$

(b)
$$x^2 + y^2 - 6x + 16y - 28 = 0$$

(c)
$$x^2 + y^2 + 6x + 6y - 28 = 0$$

(d)
$$x^2 + y^2 - 6x - 6y - 28 = 0$$

 $(d) \{3\}$

(a) $\{0, 1\}$

70.

71.	The vector equation of the plane through the point (2, 1, -1) and passing through the line of intersection of the plane $\vec{r} \cdot (\hat{i} + 3\hat{j} - \hat{k}) = 0$ and $\vec{r} \cdot (\hat{j} + 2\hat{k}) = 0$ is								
	(a) $\vec{r} \cdot (\hat{i} + 9\hat{j} + 11\hat{i}$	$(\hat{\mathbf{x}}) = 0$	(b) $\vec{r} \cdot (\hat{i} + 9\hat{j} + 11\hat{k}) = 6$						
	(c) $\vec{r} \cdot (\hat{i} - 3\hat{j} - 13\hat{i}$	$(\hat{\mathbf{x}}) = 0$	(d) None						
72.	Solution of the equation $\cos^2 x \frac{dy}{dx} - (\tan 2x)y = \cos^4 x$, $ x < \frac{\pi}{4}$, when $y\left(\frac{\pi}{6}\right) = \frac{3\sqrt{3}}{8}$ is								
	(a) $y = \tan 2x \cos^2 x$ (b) $y = \cot 2x \cdot \cos^2 x$ (c) $y = \frac{1}{2} \tan 2x \cos^2 x$ (d) $y = \frac{1}{2} \cot 2x \cdot \cos^2 x$								
73.	A tangent and a normal is drawn at the point $P \equiv (16, 16)$ of the parabola $y^2 = 16x$ which cut the axis of the parabola at the points A and B respectively. If the centre of the circle through P, A and B is C then the angle between PC and the axis of x is								
	(a) $\tan^{-1}\frac{1}{2}$	(b) tan ⁻¹ 2	(c) $\tan^{-1} \frac{3}{4}$	(d) $\tan^{-1} \frac{4}{3}$					
74.	If the equations $x^3 + 5x^2 + px + q = 0$ and $x^3 + 7x^2 + px + r = 0$ have two roots in common, the product of non common roots of two equations is								
	(a) 35	(b) -35	(c) $35 + p - q$	(d) $35 + p + q - r$					
75.	Let $f(x) = \int_{0}^{x} (\sin t - \cos t)(e^{t} - 2)(t - 1)^{3} (t - 2)^{5} dt$ (0 < x ≤ 4). Then number of points, where $f(x)$								
		aximum value, is	() 1	(N NT Cod					
	(a) one	(b) two	(c) three	(d) None of these					
76.	One hundred identical coins, each with probability, p, of showing up heads are tossed once. If $0 and the probability of head showing on 50 coins is equal to that of heads showing on 51 coins, then the values of p is$								
	(a) $\frac{1}{2}$	(b) $\frac{49}{101}$	(c) $\frac{50}{101}$	(d) $\frac{51}{101}$					
77.	The value of the definite integral $\int_0^1 dx/(x^2 + 2x\cos\alpha + 1)$ for $0 < \alpha < \pi$, is equal to								
	(a) $\sin \alpha$	(b) $tan^{-1} (sin \alpha)$	(c) $\alpha \sin \alpha$	(d) $(\alpha/2) (\sin \alpha)^{-1}$					
78.	The slope of the tangent to a curve $y = f(x)$ at $(x, f(x))$ is $2x + 1$. If the curve passes through the point $(1, 2)$, then the area of the region bounded by the curve, the x-axis and the line $x = 1$ is								
	(a) 5/6	(b) 6/5	(c) 1/6	(d) 6					

Let f(x) = [x] + |1 - x| for -1 < x < 3 ([,] denotes the greatest integer function). The point(s),

(c) $\{-2\}$

if any where this function is not differentiable, is:

(b) $\{-1, 0\}$

- If f(x) = x (x-2) (x-4), $1 \le x \le 4$, then a number satisfying the conditions of the mean value 79. theorem is
 - (a) 1
- (b) 2
- (c) 5/2
- (d) 7/2
- If a function f(x) is defined as $f(x) = min\{1 tan^n x, 1 sin^n x, 1 x^n\}$. Then the left derivative 80. of the function at $x = \frac{\pi}{4}$ is;
 - (a) 2n

- (b) 2(n + 1) (c) $-n \left(\frac{\pi}{4}\right)^{n-1}$ (d) None of these

Directions for questions 81 to 85.

If any function of y = f(x) is defined as $f: R \rightarrow [0,5]$ (See the graph)

- 81. Which is the wrong statement
 - (a) f(x) is having two maxima & one min

(b) f(x) is an even function

(c) curve y = f(x) is having asymptotes

(d) all above are wrong

- 82. $f(x) = (x - 4)^2$ having
 - (a) 1 real root
- (b) 2 real roots
- (c) 3 real roots
- (d) no real roots

- $y = f^{-1}(x)$ can be define for 83.
 - (a) $x \in \mathbb{R}$
- (b) $x \in (0, 4)$
- (c) $x \in (-4, 4)$
- (d) $x \in \phi$

- 84. No. of points of inflection of y = f(x)
- (c) 2
- (d) 4

- $\sin^{-1}\left(\frac{f(x)}{5}\right)$ is define for 85.
 - (a) $x \in \mathbb{R}$
- (b) $x \in \phi$
- (c) only for $x \in [-3, 3]$ (d) only for $x \in [-5, 5]$

Directions for questions 86 to 90.

Mr. "A" & "B" solved the following question asked in a question paper

$$\lim_{x \to \frac{\pi}{2}} \frac{2^{\cot x} - 2^{\cos x}}{\cot x - \cos x}$$

Mr. "A" solved question in following way

$$\lim_{x \to \frac{\pi}{2}} \frac{2^{\cot x} - 1 + 1 - 2^{\cos x}}{\cot x - \cos x}$$
 (step - 1)

$$\lim_{x \to \frac{\pi}{2}} \frac{\frac{2^{\cot x} - 1}{\cot x} \cot x - \frac{2^{\cos x} - 1}{\cos x} \cos x}{\cot x - \csc x}$$
 (step - 2)

$$\lim_{x \to \frac{\pi}{2}} \frac{\cot x (\ln 2) - \cos x (\ln 2)}{\cot x - \cos x}$$
 (step - 3)

$$\lim_{x \to \frac{\pi}{2}} \ln 2 \left(\frac{\cot x - \cos x}{\cot x - \cos x} \right) = \ln 2 \text{ Ans} \qquad \dots (\text{step - 4})$$

Mr. "B" solved question in following

$$\lim_{x \to \frac{\pi}{2}} \frac{2^{\cos x} \left(2^{\cot x - \cos x} - 1 \right)}{\cot x - \cos x}$$
 (step - 1)

$$= 2^{0} \ln 2$$
 (step - 2)
= $\ln 2$ Ans (step - 3)

- 86. Which is correct statement
 - (a) Mr. A gave correct solution but, Mr. B gave wrong solution
 - (b) Mr. A gave wrong solution but, Mr. B gave correct solution
 - (c) Mr. A & B both gave correct solution.
 - (d) Both gave wrong solution
- 87. Which is correct statement
 - (a) Mr. "A" did mistake in (step 2)
- (b) Mr. "A" did mistake in (step 3)
- (c) Mr. "A" did mistake in (step 4)
- (d) No mistake in solution given by Mr. "A".
- 88. Which is correct statement
 - (a) Mr. "B" did mistake in (step 1)
- (b) Mr. "B" did mistake in (step 2)
- (c) Mr. "B" did mistake in (step 3)
- (d) No mistake in solution given by Mr. "B".
- 89. Mr. "A" did mistake because
 - (a) In (step 2) he multiply by cot x & cos x in N^r & D^r which is zero.
 - (b) In (step 3) he solved the limit partially
 - (c) In (step 4) he cancelled the term (cot x cos x) which is zero for $x = \frac{\pi}{2}$
 - (d) No mistake in any step.
- 90. Mr. "B" did mistake because
 - (a) he took $2^{\cos x}$ common in (step 1)
 - (b) he considered that $\lim_{x \to \frac{\pi}{2}} \frac{2^{\cot x \cos x} 1}{\cot x \cos x}$ is same as $\lim_{x \to 0} \frac{2^x 1}{x}$
 - (c) In step 3 he kept $2^{\cos x}$ as 2^0
 - (d) no mistake in solution given by Mr. B.

IlTian Test Series

2006 BATCH

Student's Name:

	Q.No A B C D						<u>/////////////////////////////////////</u>		//////////////////////////////////////	//////////////////////////////////////		
		В	C	D	Q.No A	В	C	D	Q.No A	В	C	D
1.	0	0	O	0	31. O	O	O	О	61. O	0	0	0
2.	O	O	O	O	32. O	O	O	О	62. O	O	O	0
3.	O	О	O	O	33. O	O	O	О	63. O	О	O	0
4.	O	О	O	O	34. O	O	O	O	64. O	О	O	0
5.	O	O	O	O	35. O	O	O	O	65. O	O	O	О
6.	O	O	O	O	36. O	O	O	O	66. O	O	O	О
7.	O	O	O	O	37. O	O	O	O	67. O	Ο	O	О
8.	O	O	O	O	38. O	O	O	O	68. O	O	O	О
9.	O	O	O	O	39. O	O	O	O	69. O	O	O	О
10.	O	O	O	O	40. O	O	O	O	70. O	O	O	О
11.	O	O	O	O	41. O	O	O	O	71. O	O	O	О
12.	O	O	O	O	42. O	O	O	O	72. O	O	O	О
13.	O	O	O	O	43. O	O	O	O	73. O	O	O	0
14.	O	O	O	O	44. O	O	O	O	74. O	O	O	0
15.	O	O	O	O	45. O	O	O	O	75. O	O	O	О
16.	O	O	O	O	46. O	O	O	O	76. O	O	O	О
17.	O	O	O	O	47. O	O	O	O	77. O	O	O	О
18.	O	О	O	O	48. O	O	O	O	78. O	O	O	О
19.	O	О	O	O	49. O	O	O	O	79. O	O	O	О
20.	O	О	O	O	50. O	O	O	O	80. O	O	O	О
21.	O	O	O	O	51. O	O	O	O	81. O	O	O	О
22.	O	O	O	O	52. O	O	O	O	82. O	O	O	О
23.	O	О	O	O	53. O	O	O	O	83. O	O	O	О
24.	O	O	O	O	54. O	O	O	O	84. O	O	O	О
25.	O	О	O	O	55. O	O	O	O	85. O	O	O	О
26.	O	О	O	O	56. O	O	O	O	86. O	O	O	О
27.	O	О	O	O	57. O	O	O	O	87. O	O	O	О
28.	O	О	O	O	58. O	O	O	O	88. O	O	O	О
29.	O	O	О	O	59. O	O	O	O	89. O	O	O	О
30.	O	O	O	O	60. O	O	O	0	90. O	O	O	О
l						-	-	J				J

NOTE: USE ONLY HB PENCIL. USAGE OF PENS WILL INVITE DISQUALIFICATION.